3.1154 \(\int \frac{(a+b x^2)^p (c+d x^2)^q}{\sqrt{e x}} \, dx\)

Optimal. Leaf size=89 \[ \frac{2 \sqrt{e x} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (\frac{1}{4};-p,-q;\frac{5}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{e} \]

[Out]

(2*Sqrt[e*x]*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/4, -p, -q, 5/4, -((b*x^2)/a), -((d*x^2)/c)])/(e*(1 + (b*x^
2)/a)^p*(1 + (d*x^2)/c)^q)

________________________________________________________________________________________

Rubi [A]  time = 0.0720401, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {511, 510} \[ \frac{2 \sqrt{e x} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (\frac{1}{4};-p,-q;\frac{5}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^p*(c + d*x^2)^q)/Sqrt[e*x],x]

[Out]

(2*Sqrt[e*x]*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/4, -p, -q, 5/4, -((b*x^2)/a), -((d*x^2)/c)])/(e*(1 + (b*x^
2)/a)^p*(1 + (d*x^2)/c)^q)

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^p \left (c+d x^2\right )^q}{\sqrt{e x}} \, dx &=\left (\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \frac{\left (1+\frac{b x^2}{a}\right )^p \left (c+d x^2\right )^q}{\sqrt{e x}} \, dx\\ &=\left (\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \left (c+d x^2\right )^q \left (1+\frac{d x^2}{c}\right )^{-q}\right ) \int \frac{\left (1+\frac{b x^2}{a}\right )^p \left (1+\frac{d x^2}{c}\right )^q}{\sqrt{e x}} \, dx\\ &=\frac{2 \sqrt{e x} \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \left (c+d x^2\right )^q \left (1+\frac{d x^2}{c}\right )^{-q} F_1\left (\frac{1}{4};-p,-q;\frac{5}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{e}\\ \end{align*}

Mathematica [A]  time = 0.0495254, size = 89, normalized size = 1. \[ \frac{2 x \left (a+b x^2\right )^p \left (\frac{a+b x^2}{a}\right )^{-p} \left (c+d x^2\right )^q \left (\frac{c+d x^2}{c}\right )^{-q} F_1\left (\frac{1}{4};-p,-q;\frac{5}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{\sqrt{e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^p*(c + d*x^2)^q)/Sqrt[e*x],x]

[Out]

(2*x*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/4, -p, -q, 5/4, -((b*x^2)/a), -((d*x^2)/c)])/(Sqrt[e*x]*((a + b*x^
2)/a)^p*((c + d*x^2)/c)^q)

________________________________________________________________________________________

Maple [F]  time = 0.045, size = 0, normalized size = 0. \begin{align*} \int{ \left ( b{x}^{2}+a \right ) ^{p} \left ( d{x}^{2}+c \right ) ^{q}{\frac{1}{\sqrt{ex}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(1/2),x)

[Out]

int((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{\sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q/sqrt(e*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x}{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{e x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x)*(b*x^2 + a)^p*(d*x^2 + c)^q/(e*x), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**p*(d*x**2+c)**q/(e*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{\sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q/sqrt(e*x), x)